${{\mathit H}^{\pm}}$ (charged Higgs) mass limits for m$_{{{\mathit H}^{+}}}<$ m(top)

INSPIRE   JSON  (beta) PDGID:
S064HGC
Unless otherwise stated, LEP limits assume B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}})+B({{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$)=1, and hold for all values of B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}_{{{\tau}}}}$), and assume ${{\mathit H}^{+}}$ weak isospin of $\mathit T_{3}$=+1/2. In the following, tan $\beta $ is the ratio of the two vacuum expectation values in two-doublet models (2HDM).

The limits are also applicable to point-like technipions. For a discussion of techniparticles, see the Review of Dynamical Electroweak Symmetry Breaking in this Review.

Limits obtained at the LHC are given in the m${}^{mod-}_{h}$ benchmark scenario, see CARENA 2013, and hold for all tan $\beta $ values.

For limits obtained in hadronic collisions before the observation of the top quark, and based on the top mass values inconsistent with the current measurements, see the 1996 (Physical Review D54 1 (1996)) Edition of this Review.

Searches in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at and above the ${{\mathit Z}}~$pole have conclusively ruled out the existence of a charged Higgs in the region ${\mathit m}_{{{\mathit H}^{+}}}{ {}\lesssim{} }45$ GeV, and are meanwhile superseded by the searches in higher energy ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at LEP. Results that are by now obsolete are therefore not included in this compilation, and can be found in a previous Edition (The European Physical Journal C15 1 (2000)) of this Review.

In the following, and unless otherwise stated, results from the LEP experiments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from the study of the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}}$ process. Limits from ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ decays are usually stronger in generic 2HDM models than in Supersymmetric models.

VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{\text{none 80 - 140}}$ 95 1
AAD
01AF
 
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
$\bf{\text{none 90 - 155}}$ 95 2
KHACHATRYAN
01AX
 
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
$\bf{> 80}$ 95 3
LEP
01
 
LEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}},\mathit E_{{\mathrm {cm}}}{}\leq{}$209GeV
$> 76.3$ 95 4
ABBIENDI
01
 
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}},\mathit E_{{\mathrm {cm}}}{}\leq{}$209GeV
$>74.4$ 95
ABDALLAH
00I
 
DLPH $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV
$>76.5$ 95
ACHARD
00E
 
L3 $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV
$>79.3$ 95
HEISTER
00P
 
ALEP $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV
• • We do not use the following data for averages, fits, limits, etc. • •
5
AAD
02
 
ATLS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
6
HAYRAPETYAN
02AV
 
CMS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit \gamma}}$
7
AAD
02AH
 
ATLS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
8, 9
AAD
02BB
 
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$
10, 9
AAD
02BW
 
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
11
TUMASYAN
02AV
 
CMS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit H}_{{{2}}}^{0}}{{\mathit W}^{\pm}}$
12
TUMASYAN
02B
 
CMS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit \gamma}}$
13
AAD
02V
 
ATLS ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
14
SIRUNYAN
02W
 
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$
15
AAD
02W
 
ATLS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
16
SIRUNYAN
02AO
 
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
17
SIRUNYAN
02AV
 
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
18
SIRUNYAN
02BE
 
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$
19
SIRUNYAN
01AH
 
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
20
SIRUNYAN
01BP
 
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$
21
SIRUNYAN
01CC
 
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
22
SIRUNYAN
01CQ
 
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$
23
AABOUD
01BW
 
ATLS ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ or ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
24
AABOUD
01CD
 
ATLS ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
25
AABOUD
01CH
 
ATLS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
26
HALLER
01
 
RVUE ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$
27
SIRUNYAN
01DO
 
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$
28
MISIAK
01
 
RVUE ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}$( ${{\mathit d}}$) ${{\mathit \gamma}}$
29
SIRUNYAN
01AE
 
CMS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
30
AABOUD
01A
 
ATLS ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
31
AAD
01AJ
 
ATLS ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
32
AAD
01AJ
 
ATLS ${{\mathit q}}$ ${{\mathit q}}$ $\rightarrow$ ${{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
33
AAD
01AF
 
ATLS ${{\mathit t}}{{\mathit H}^{\pm}}$
34
AAD
01M
 
ATLS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
35
KHACHATRYAN
01AX
 
CMS ${{\mathit t}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
36
KHACHATRYAN
01AX
 
CMS ${{\mathit t}}{{\mathit H}^{\pm}}$, ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}^{\pm}}{{\mathit \nu}}$
37
KHACHATRYAN
01BF
 
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$
38
AAD
01M
 
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$, ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
39
AALTONEN
01A
 
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit \tau}}{{\mathit \nu}}$
40
AAD
01AC
 
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
41
AAD
01V
 
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, lepton non-universality
42
AAD
01BH
 
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
43
CHATRCHYAN
01AA
 
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
44
AALTONEN
01P
 
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$
$> 316$ 95 45
DESCHAMPS
01
 
RVUE Type II, flavor physics data
46
AALTONEN
00AJ
 
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
47
ABAZOV
00AC
 
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
48
ABAZOV
00AG
 
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
49
ABAZOV
00AI
 
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
50
ABAZOV
00P
 
D0 ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
51
ABULENCIA
00E
 
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
$>92.0$ 95
ABBIENDI
00
 
OPAL B(${{\mathit \tau}}{{\mathit \nu}}$) = 1
$>76.7$ 95 52
ABDALLAH
00I
 
DLPH Type I
53
ABBIENDI
00
 
OPAL ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\overline{\mathit \nu}}}{{\mathit \nu}}$, ${{\mathit e}}{{\overline{\mathit \nu}}}{{\mathit \nu}}$
54
ABAZOV
00B
 
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
55
BORZUMATI
00
 
RVUE
56
ABBIENDI
00Q
 
OPAL ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ X
57
BARATE
00E
 
ALEP ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$
$>315$ 99 58
GAMBINO
00
 
RVUE ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$
59
AFFOLDER
00I
 
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
$>59.5$ 95
ABBIENDI
99E
 
OPAL $\mathit E_{{\mathrm {cm}}}{}\leq{}183$ GeV
60
ABBOTT
99E
 
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
61
ACKERSTAFF
99D
 
OPAL ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \nu}}$, ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$
62
ACCIARRI
99F
 
L3 ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$
63
AMMAR
99B
 
CLEO ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$
64
COARASA
99
 
RVUE ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ X
65
GUCHAIT
99
 
RVUE ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
66
MANGANO
99
 
RVUE ${{\mathit B}}$ $_{{{\mathit u}}({{\mathit c}})}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$
67
STAHL
99
 
RVUE ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$
$>244$ 95 68
ALAM
99
 
CLE2 ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$
69
BUSKULIC
99
 
ALEP ${{\mathit b}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}{{\mathit X}}$
1  AAD 2015AF search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$) between $2.3 \times 10^{-3}$ and $1.3 \times 10^{-2}$ (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. The region ${\mathit m}_{{{\mathit H}^{+}}}$ $<$ 140 GeV is excluded for tan $\beta $ $>$ 1 in the considered scenarios.
2  KHACHATRYAN 2015AX search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$) between $1.2 \times 10^{-2}$ and $1.5 \times 10^{-3}$ (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM. The region ${\mathit m}_{{{\mathit H}^{+}}}$ $<$ 155 GeV is excluded for tan $\beta $ $>$ 1 in the considered scenarios.
3  LEP 2013 give a limit that refers to the Type II scenario. The limit for B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$) = 1 is 94 GeV (95$\%$ CL), and for B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\mathit s}}$) = 1 the region below 80.5 as well as the region $83 - 88$ GeV is excluded (95$\%$ CL). LEP 2013 also search for the decay mode ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit W}^{*}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, which is not negligible in Type I models. The limit in Type I models is 72.5 GeV (95$\%$ CL) if ${\mathit m}_{{{\mathit A}^{0}}}$ $>$ 12 GeV.
4  ABBIENDI 2012 also search for the decay mode ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit W}^{*}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$.
5  AAD 2025 combine AAD 2023AH and AAD 2024AD and derive limits on the isotriplet contribution to the gauge boson masses in the Georgi-Machacek model. See their Fig. 5(c).
6  HAYRAPETYAN 2024AV search for production of scalar resonance decaying to ${{\mathit W}^{\pm}}{{\mathit \gamma}}$ with ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ in 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for the mass range $0.3 - 2.0$ TeV for a narrow and a broad width. Combined limits with TUMASYAN 2022B are shown in Fig. 8.
7  AAD 2023AH search for vector boson fusion production of ${{\mathit H}^{\pm}}$ decaying to ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 for limits on cross section times branching ratio in the Georgi-Machacek model for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $0.2 - 1.0$ TeV, and also for limits on the triplet vacuum expectation value fraction.
8  AAD 2023BB search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits on the product of branching ratios for ${\mathit m}_{{{\mathit H}^{+}}}$ = $60 - 160$ GeV.
9  Charge conjugated states are also implied.
10  AAD 2023BW search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ from pair produced top quarks, with the decay chain ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5(b)-(d) for limits on the product of branching ratios for ${\mathit m}_{{{\mathit H}^{+}}}$ = 120, 140, 160 GeV, and ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 72$ GeV.
11  TUMASYAN 2023AV search for production of ${{\mathit H}^{\pm}}$ in association with a top quark, decaying to ${{\mathit H}_{{{2}}}^{0}}{{\mathit W}^{\pm}}$, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$, using 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 for limits on production cross section times branching ratios for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $0.3 - 0.7$ TeV and ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = 0.2 TeV.
12  TUMASYAN 2022B search for production of scalar resonance decaying to ${{\mathit W}^{\pm}}$ ${{\mathit \gamma}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\mathit \gamma}}$ in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on cross section times branching ratio for the mass range $0.7 - 6.0$ TeV, assuming narrow width or $\Gamma /{{\mathit M}}$ = 0.05.
13  AAD 2021V search for ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ associated production followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 2$ TeV. See also their Fig. 7 for the excluded region in the parameter space of the hMSSM and the following MSSM benchmark scenarios: ${{\mathit M}_{{{h}}}^{125}}$, ${{\mathit M}_{{{h}}}^{125}}({{\widetilde{\mathit \chi}}}$), ${{\mathit M}_{{{h}}}^{125}}({{\widetilde{\mathit \tau}}}$), ${{\mathit M}_{{{h}}}^{125}}$(alignment), ${{\mathit M}}{}^{125}_{h_{1}}$(CPV).
14  SIRUNYAN 2021W search for vector boson fusion production of ${{\mathit H}^{+}}$ decaying to ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 3.0$ TeV, and also for limits on the fraction of the triplet vev contribution to the ${{\mathit W}}$ mass in the Georgi-Machacek model.
15  AAD 2020W search for dijet resonances in events with isolated leptons using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. As a byproduct, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ produced in association with ${{\overline{\mathit t}}}{{\mathit b}}$ is searched for. Limits on the product of cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.6 - 2$ TeV are given in their Fig. 5(c).
16  SIRUNYAN 2020AO search for ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ produced in association with ${{\mathit t}}({{\mathit b}}$) in all jet final states in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for limits on the product of cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 3$ TeV. Limits for ${{\mathit s}}$-channel production are also given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.8 - 3$ TeV. See also Fig. 7 for the corresponding limits in scenarios in the minimal supersymmetric standard model. Cross section limits from combined results with SIRUNYAN 2020AV are given in Fig. 8.
17  SIRUNYAN 2020AV search for ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ produced in association with ${{\mathit t}}({{\mathit b}}$) in final states with one or two leptons, in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on the product of cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 3$ TeV, and their Fig. 6 for the corresponding limits in scenarios in the minimal supersymmetric standard model.
18  SIRUNYAN 2020BE search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ followed by the decay ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ in pair produced top quark events using 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Limits on the branching ratio in the range $1.68 - 0.25\%$ (95$\%$CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV, see their Fig. 4.
19  SIRUNYAN 2019AH search for ${{\mathit H}^{+}}$ in the decay of a pair-produced ${{\mathit t}}$ quark, or in associated ${{\mathit t}}{{\mathit b}}{{\mathit H}^{+}}$ or nonresonant ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit H}^{+}}{{\mathit W}^{-}}$ production, followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$, in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Upper limits on cross section times branching ratio between 6 pb and 5 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 3000$ GeV (including the non-resonant production near the top quark mass), see their Fig. 6 (left). See their Fig. 6 (right) for the excluded regions in the $\mathit m{}^{{\mathrm {mod-}}}_{h}$ scenario of the MSSM.
20  SIRUNYAN 2019BP search for vector boson fusion production of ${{\mathit H}^{+}}$ decaying to ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.3 - 2.0$ TeV, and also for limits on the fraction of the triplet vev contribution to the ${{\mathit W}}$ mass in the Georgi-Machacek model.
21  SIRUNYAN 2019CC search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ from pair produced top quarks, with the decay chain ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2 for limits on the product of branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 75$ GeV.
22  SIRUNYAN 2019CQ search for vector boson fusion production of ${{\mathit H}^{+}}$ decaying to ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$ or ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.6 - 2.0$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
23  AABOUD 2018BW search for ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ associated production or the decay ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$, in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8(a) for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 2000$ GeV, and Fig. 8(b) for limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.
24  AABOUD 2018CD search for ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ associated production followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 2$ TeV. See also their Fig. 9 for the excluded region in the parameter space of the ${{\mathit m}}{}^{{\mathrm {mod-}}}_{h}$ and hMSSM scenarios of the MSSM. The theory predictions overlaid to the experimental limits to determine the excluded ${\mathit m}_{{{\mathit H}^{+}}}$ range are shown without their respective uncertainty band.
25  AABOUD 2018CH search for vector boson fusion production of ${{\mathit H}^{\pm}}$ decaying to ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $0.2 - 0.9$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
26  HALLER 2018 give 95$\%$ CL lower limits on ${\mathit m}_{{{\mathit H}^{+}}}$ of 590 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B(${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$).
27  SIRUNYAN 2018DO search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 3 for upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 150$ GeV assuming that B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$) = 1 and B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) + B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit W}^{+}}$) = 1.
28  MISIAK 2017 give 95$\%$ CL lower limits on ${\mathit m}_{{{\mathit H}^{+}}}$ between 570 and 800 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B(${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}$( ${{\mathit d}}$) ${{\mathit \gamma}}$).
29  SIRUNYAN 2017AE search for vector boson fusion production of ${{\mathit H}^{\pm}}$ decaying to ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 15.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 3 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $0.2 - 2.0$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
30  AABOUD 2016A search for ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Upper limits on ${\mathit \sigma (}{{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}{)}$ B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$) between 1.9 pb and 15 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $200 - 2000$ GeV, see their Fig. 6. See their Fig. 7 for the excluded regions in the hMSSM scenario.
31  AAD 2016AJ search for ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for upper limits on ${\mathit \sigma (}{{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}{)}$ B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $200 - 600$ GeV.
32  AAD 2016AJ search for ${{\mathit H}^{\pm}}$ production from quark-antiquark annihilation, followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$, in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 10 for upper limits on ${\mathit \sigma (}{{\mathit H}^{\pm}}{)}$ B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $400 - 3000$ GeV.
33  AAD 2015AF search for ${{\mathit t}}{{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}^{\pm}}{{\mathit \nu}}$ in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on ${\mathit \sigma (}{{\mathit t}}{{\mathit H}^{\pm}}{)}$ B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$) between 760 and 4.5 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 1000$ GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM.
34  AAD 2015M search for vector boson fusion production of ${{\mathit H}^{\pm}}$ decaying to ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 2 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $200 - 1000$ GeV, and Fig. 3 for limits on thetriplet vacuum expectation value fraction in the Georgi-Machacek model.
35  KHACHATRYAN 2015AX search for ${{\mathit t}}{{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on ${\mathit \sigma (}{{\mathit t}}{{\mathit H}^{\pm}}{)}$ B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$) between 2.0 and 0.13 pb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 600$ GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
36  KHACHATRYAN 2015AX search for ${{\mathit t}}{{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}^{\pm}}{{\mathit \nu}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on ${\mathit \sigma (}{{\mathit t}}{{\mathit H}^{\pm}}{)}$ B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$) between 380 and 25 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 600$ GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
37  KHACHATRYAN 2015BF search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$) between $1.2 \times 10^{-2}$ and $6.5 \times 10^{-2}$ (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV.
38  AAD 2014M search for the decay cascade ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$, ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Table III for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$= $325 - 1025$ GeV and ${\mathit m}_{{{\mathit H}^{+}}}$= $225 - 925$ GeV.
39  AALTONEN 2014A measure B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit \tau}}{{\mathit \nu}}$) = $0.096$ $\pm0.028$ using 9 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. For ${\mathit m}_{{{\mathit H}^{+}}}$= $80 - 140$ GeV, this measured value is translated to a limit B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) $<$ 0.059 at 95$\%$ CL assuming B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) = 1.
40  AAD 2013AC search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ (flavor unidentified) in 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.05 and 0.01 (95$\%$CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}=90 - 150$ GeV and B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$)=1.
41  AAD 2013V search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ through violation of lepton universality with 4.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.032 and 0.044 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 140$ GeV and B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) = 1. By combining with AAD 2012BH, the limits improve to 0.008 to 0.034 for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV. See their Fig. 7 for the excluded region in the $\mathit m{}^{{\mathrm {max}}}_{h}$ scenario of the MSSM.
42  AAD 2012BH search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ with 4.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.01 and 0.05 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV and B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) = 1. See their Fig.$~$8 for the excluded region in the $\mathit m{}^{{\mathrm {max}}}_{h}$ scenario of the MSSM.
43  CHATRCHYAN 2012AA search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ with 2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.019 and 0.041 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV and B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$)=1.
44  AALTONEN 2011P search in 2.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV for the decay chain ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with ${\mathit m}_{{{\mathit A}^{0}}}$ between 4 and 9 GeV. See their Fig.$~$4 for limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) for 90 $<$ ${\mathit m}_{{{\mathit H}^{+}}}<$ 160 GeV.
45  DESCHAMPS 2010 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$, ${{\mathit B}}$, ${{\mathit B}_{{{s}}}}$ mixings, and ${{\mathit Z}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$. The limit holds irrespective of tan ${{\mathit \beta}}$.
46  AALTONEN 2009AJ search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ in ${{\mathit t}}{{\overline{\mathit t}}}$ events in 2.2 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.08 and 0.32 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $60 - 150$ GeV and B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$) = 1.
47  ABAZOV 2009AC search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in ${{\mathit t}}{{\overline{\mathit t}}}$ events in 0.9 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.19 and 0.25 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV and B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) = 1. See their Fig.$~$4 for an excluded region in a MSSM scenario.
48  ABAZOV 2009AG measure ${{\mathit t}}{{\overline{\mathit t}}}$ cross sections in final states with ${{\mathit \ell}}$ + jets (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$), ${{\mathit \ell}}{{\mathit \ell}}$, and ${{\mathit \tau}}{{\mathit \ell}}$ in 1 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV, which constrains possible ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ branching fractions. Upper limits (95$\%$ CL) on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.15 and 0.40 (0.48 and 0.57) are given for B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) = 1 (B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$) = 1) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV.
49  ABAZOV 2009AI search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ in ${{\mathit t}}{{\overline{\mathit t}}}$ events in 1 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Final states with ${{\mathit \ell}}$ + jets (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$), ${{\mathit \ell}}{{\mathit \ell}}$, and ${{\mathit \tau}}{{\mathit \ell}}$ are examined. Upper limits on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) (95$\%$ CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) = 1 (B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$) = 1) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV. For B(${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$) = 1 also a simultaneous extraction of B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) and the ${{\mathit t}}{{\overline{\mathit t}}}$ cross section is performed, yielding a limit on B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) between 0.12 and 0.26 for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV. See their Figs.$~5 - 8$ for excluded regions in several MSSM scenarios.
50  ABAZOV 2009P search for ${{\mathit H}^{+}}$ production by ${{\mathit q}}{{\overline{\mathit q}}^{\,'}}$ annihilation followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ decay in 0.9 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Cross section limits in several two-doublet models are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 300$ GeV. A region with 20 ${ {}\lesssim{} }$ tan $\beta $ ${ {}\lesssim{} }$ 70 is excluded (95$\%$ CL) for 180 GeV ${ {}\lesssim{} }{\mathit m}_{{{\mathit H}^{+}}}{ {}\lesssim{} }$ 184 GeV in type-I models.
51  ABULENCIA 2006E search for associated ${{\mathit H}^{0}}{{\mathit W}}$ production in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. A fit is made for ${{\mathit t}}{{\overline{\mathit t}}}$ production processes in dilepton, lepton $+$ jets, and lepton $+$ ${{\mathit \tau}}$ final states, with the decays ${{\mathit t}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit b}}$ and ${{\mathit t}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit b}}$ followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$, ${{\mathit c}}{{\overline{\mathit s}}}$, ${{\mathit t}^{*}}{{\overline{\mathit b}}}$, or ${{\mathit W}^{+}}{{\mathit H}^{0}}$. Within the MSSM the search is sensitive to the region tan $\beta <$ 1 or $>$ 30 in the mass range ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV. See Fig. 2 for the excluded region in a certain MSSM scenario.
52  ABDALLAH 2004I search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}}$ with ${{\mathit H}^{\pm}}$ decaying to ${{\mathit \tau}}{{\mathit \nu}}$, ${{\mathit c}}{{\mathit s}}$, or ${{\mathit W}^{*}}{{\mathit A}^{0}}$ in Type-I two-Higgs-doublet models.
53  ABBIENDI 2003 give a limit ${\mathit m}_{{{\mathit H}^{+}}}>1.28$tan $\beta $ GeV (95$\%$CL) in Type$~$II two-doublet models.
54  ABAZOV 2002B search for a charged Higgs boson in top decays with ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. For ${\mathit m}_{{{\mathit H}^{+}}}$=75 GeV, the region tan $\beta >32.0$ is excluded at 95$\%$CL. The excluded mass region extends to over 140 GeV for tan $\beta $ values above 100.
55  BORZUMATI 2002 point out that the decay modes such as ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}$, ${{\mathit A}^{0}}{{\mathit W}}$, and supersymmetric ones can have substantial branching fractions in the mass range explored at LEP$~$II and Tevatron.
56  ABBIENDI 2001Q give a limit tan $\beta /{\mathit m}_{{{\mathit H}^{+}}}<0.53$ GeV${}^{-1}$ (95$\%$CL) in Type$~$II two-doublet models.
57  BARATE 2001E give a limit tan $\beta /{\mathit m}_{{{\mathit H}^{+}}}<0.40$ GeV${}^{-1}$ (90$\%$ CL) in Type$~$II two-doublet models. An independent measurement of ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ X gives tan $\beta /{\mathit m}_{{{\mathit H}^{+}}}<0.49$ GeV${}^{-1}$ (90$\%$ CL).
58  GAMBINO 2001 use the world average data in the summer of 2001 B(${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$) = ($3.23$ $\pm0.42$) $ \times 10^{-4}$. The limit applies for Type-II two-doublet models.
59  AFFOLDER 2000I search for a charged Higgs boson in top decays with ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The excluded mass region extends to over 120$~$GeV for tan $\beta $ values above 100 and B(${{\mathit \tau}}{{\mathit \nu}}$) = 1. If B(${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}){ {}\gtrsim{} }0.6$, ${\mathit m}_{{{\mathit H}^{+}}}$ up to 160 GeV is excluded. Updates ABE 1997L.
60  ABBOTT 1999E search for a charged Higgs boson in top decays in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV, by comparing the observed ${{\mathit t}}{{\overline{\mathit t}}}$ cross section (extracted from the data assuming the dominant decay ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit W}^{+}}$) with theoretical expectation. The search is sensitive to regions of the domains tan $\beta { {}\lesssim{} }1$, $50<{\mathit m}_{{{\mathit H}^{+}}}$(GeV) ${ {}\lesssim{} }120$ and tan $\beta { {}\gtrsim{} }40$, $50<{\mathit m}_{{{\mathit H}^{+}}}$ (GeV) ${ {}\lesssim{} }160$. See Fig.$~$3 for the details of the excluded region.
61  ACKERSTAFF 1999D measure the Michel parameters $\rho $, $\xi $, $\eta $, and $\xi \delta $ in leptonic ${{\mathit \tau}}~$decays from ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$. Assuming ${{\mathit e}}-{{\mathit \mu}}$ universality, the limit ${\mathit m}_{{{\mathit H}^{+}}}>0.97$ tan $\beta $ GeV (95$\%$CL) is obtained for two-doublet models in which only one doublet couples to leptons.
62  ACCIARRI 1997F give a limit ${\mathit m}_{{{\mathit H}^{+}}}>2.6$ tan $\beta $ GeV (90$\%$ CL) from their limit on the exclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ branching ratio.
63  AMMAR 1997B measure the Michel parameter$~\rho $ from ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \nu}}$ decays and assumes ${{\mathit e}}/{{\mathit \mu}}$ universality to extract the Michel $\eta ~$parameter from ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$ decays. The measurement is translated to a lower limit on ${\mathit m}_{{{\mathit H}^{+}}}$ in a two-doublet model ${\mathit m}_{{{\mathit H}^{+}}}>0.97$ tan $\beta $ GeV (90$\%~$CL).
64  COARASA 1997 reanalyzed the constraint on the (${\mathit m}_{{{\mathit H}^{\pm}}}$,tan $\beta $) plane derived from the inclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ X branching ratio in GROSSMAN 1995B and BUSKULIC 1995. They show that the constraint is quite sensitive to supersymmetric one-loop effects.
65  GUCHAIT 1997 studies the constraints on ${\mathit m}_{{{\mathit H}^{+}}}$ set by Tevatron data on ${{\mathit \ell}}{{\mathit \tau}}$ final states in ${{\mathit t}}$ ${{\overline{\mathit t}}}$ $\rightarrow$ ( ${{\mathit W}}{{\mathit b}}$) ( ${{\mathit H}}{{\mathit b}}$), ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$. See Fig.$~$2 for the excluded region.
66  MANGANO 1997 reconsiders the limit in ACCIARRI 1997F including the effect of the potentially large ${{\mathit B}_{{{c}}}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ background to ${{\mathit B}_{{{u}}}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$ decays. Stronger limits are obtained.
67  STAHL 1997 fit ${{\mathit \tau}}$ lifetime, leptonic branching ratios, and the Michel parameters and derive limit ${\mathit m}_{{{\mathit H}^{+}}}>1.5$ tan $\beta $ GeV (90$\%~$CL) for a two-doublet model. See also STAHL 1994.
68  ALAM 1995 measure the inclusive ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ branching ratio at ${{\mathit \Upsilon}{(4S)}}$ and give B(${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}})<4.2 \times 10^{-4}$ (95$\%~$CL), which translates to the limit ${\mathit m}_{{{\mathit H}^{+}}}>[244+63$/(tan $\beta ){}^{1.3}$] GeV in the Type$~$II two-doublet model. Light supersymmetric particles can invalidate this bound.
69  BUSKULIC 1995 give a limit ${\mathit m}_{{{\mathit H}^{+}}}>1.9$ tan $\beta $ GeV (90$\%$ CL) for Type-II models from ${{\mathit b}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}{{\mathit X}}$ branching ratio, as proposed in GROSSMAN 1994.
References