CHARMED BARYONS
($\mathit C$ = $+1$)
${{\mathit \Lambda}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$,
${{\mathit \Xi}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Xi}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Omega}_{{{c}}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE   JSON PDGID:
B102

${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}$

$I(J^P)$ = $0(3/2^{-})$ 
The spin-parity has not been measured but is expected to be ${}^{}3/2{}^{-}$: this is presumably the charm counterpart of the strange ${{\mathit \Lambda}{(1520)}}$.
${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}$ MASS $2628.00$ $\pm0.15$ MeV 
 
${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}-{{\mathit \Lambda}_{{{c}}}^{+}}$ MASS DIFFERENCE $341.54$ $\pm0.05$ MeV 
 
${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}$ WIDTH < 0.52 MeV  CL=90%
 
${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}}{{\mathit \pi}}$ and its submode ${{\mathit \Sigma}{(2455)}}{{\mathit \pi}}$ are the only strong decays allowed to an excited ${{\mathit \Lambda}_{{{c}}}^{+}}$ having this mass.
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ [1] ($50$ $\pm7$ ) $\%$ 184
 
$\Gamma_{2}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}$ ($2.6$ $\pm0.4$ ) $\%$ 103
 
$\Gamma_{3}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}$ ($2.6$ $\pm0.4$ ) $\%$ 103
 
$\Gamma_{4}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ 3-body large 184
 
$\Gamma_{5}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{0}}$ [2] <50 $\%$ CL=90% 293
 
$\Gamma_{6}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \gamma}}$ <26 $\%$ CL=90% 319
 
[1] In the isospin limit, this braching fraction would be 2/3, the other 1/3 being decays to ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$.
[2] A test that the isospin is indeed 0, so that the particle is indeed a ${{\mathit \Lambda}_{{{c}}}^{+}}$.