CHARMED BARYONS
($\mathit C$ = $+1$)
${{\mathit \Lambda}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$,
${{\mathit \Xi}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Xi}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Omega}_{{{c}}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE   JSON PDGID:
B115

${{\mathit \Sigma}_{{{c}}}{(2520)}}$

$I(J^P)$ = $1(3/2^{+})$ 
Seen in the ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{\pm}}$ mass spectrum. The natural assignment is that this is the $\mathit J{}^{P} = 3/2{}^{+}$ excitation of the ${{\mathit \Sigma}_{{{c}}}{(2455)}}$, the charm counterpart of the ${{\mathit \Sigma}{(1385)}}$, but neither $\mathit J$ nor ${}^{P}$ has been measured.
Expand/Collapse All
▸  ${{\mathit \Sigma}_{{{c}}}{(2520)}}$ MASSES
▸  ${{\mathit \Sigma}_{{{c}}}{(2520)}}$ MASS DIFFERENCES
▸  ${{\mathit \Sigma}_{{{c}}}{(2520)}}$ WIDTHS
${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}}$ is the only strong decay allowed to a ${{\mathit \Sigma}_{{{c}}}}$ having this mass.
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}}$ $\sim100$ $\%$ 179