($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Xi}_{{c}}{(2790)}}$ $I(J^P)$ = $1/2(1/2^{-})$ 

Seen in ${{\mathit \Xi}_{{c}}^{\,'}}{{\mathit \pi}}$ decays. The simplest assignment, based on the mass, width, and decay mode, is that this belongs in the same SU(4) multiplet as the ${{\mathit \Lambda}{(1405)}}$ and the ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}$, but the spin and parity have not been measured.
${{\boldsymbol \Xi}_{{c}}{(2790)}}$ MASSES
${{\mathit \Xi}_{{c}}{(2790)}^{+}}$ MASS   $2792.4 \pm0.5$ MeV 
${{\mathit \Xi}_{{c}}{(2790)}^{0}}$ MASS   $2794.1 \pm0.5$ MeV 
${{\boldsymbol \Xi}_{{c}}{(2790)}}–{{\boldsymbol \Xi}_{{c}}^{\,'}}$ MASS DIFFERENCES
${\mathit m}_{{{\mathit \Xi}_{{c}}{(2790)}^{+}}}–{\mathit m}_{{{\mathit \Xi}_{{c}}^{'0}}}$   $213.20 \pm0.22$ MeV 
${\mathit m}_{{{\mathit \Xi}_{{c}}{(2790)}^{0}}}–{\mathit m}_{{{\mathit \Xi}_{{c}}^{'+}}}$   $215.70 \pm0.22$ MeV 
${{\mathit \Xi}_{{c}}{(2790)}^{+}}–{{\mathit \Xi}_{{c}}{(2790)}^{0}}$ MASS DIFFERENCE   $-1.7 \pm0.7$ MeV 
${{\boldsymbol \Xi}_{{c}}{(2790)}}$ WIDTHS
${{\mathit \Xi}_{{c}}{(2790)}^{+}}$ WIDTH   $8.9 \pm1.0$ MeV 
${{\mathit \Xi}_{{c}}{(2790)}^{0}}$ WIDTH   $10.0 \pm1.1$ MeV 
$\Gamma_{1}$ ${{\mathit \Xi}_{{c}}^{\,'}}{{\mathit \pi}}$  seen 160