($\boldsymbol C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\boldsymbol \Lambda}_{{c}}^{+}}$ $I(J^P)$ = $0(1/2^{+})$ 

The parity of the ${{\mathit \Lambda}_{{c}}^{+}}$ is defined to be positive (as are the parities of the proton, neutron, and ${{\mathit \Lambda}}$). The quark content is ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ . Results of an analysis of ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ decays (JEZABEK 1992 ) are consistent with $\mathit J = 1/2$. Nobody doubts that the spin is indeed 1/2. We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.
${{\mathit \Lambda}_{{c}}^{+}}$ MASS   $2286.46 \pm0.14$ MeV 
Branching fractions marked with a footnote, e.g. [$\mathit a$], have been corrected for decay modes not observed in the experiments. For example, the submode fraction ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ seen in ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ has been multiplied up to include ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit \pi}^{0}}$ decays.
    constrained fit information