$\mathit CP$ VIOLATION

$\mathit A_{CP}$ is defined as
${B({{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}})–B({{\mathit B}^{+}} \rightarrow {{\mathit f}})\over B({{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}})+B({{\mathit B}^{+}} \rightarrow {{\mathit f}})}$,
the $\mathit CP$-violation charge asymmetry of exclusive ${{\mathit B}^{-}}$ and ${{\mathit B}^{+}}$ decay.

$\mathit A_{CP}({{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ , ${\mathit m}_{{{\mathit K}^{+}} {{\mathit K}^{-}}}$ $<$ 1.1 GeV)

INSPIRE   JSON  (beta) PDGID:
S041A82
VALUE DOCUMENT ID TECN  COMMENT
$-0.170$ $\pm0.073$ $\pm0.017$ 1
HSU
2023
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
1  Investigated the angular distribution of ${{\mathit K}^{+}}{{\mathit K}^{-}}$ pairs with invariant mass below 1.1 GeV/c${}^{2}$, which exhibits both a strong enhancement in signal and very large direct $\mathit CP$ violation.
Conservation Laws:
$\mathit CP$ INVARIANCE
References