OTHER ${{\mathit H}}$ PRODUCTION PROPERTIES

Higgs trilinear self coupling modifier ${{\mathit \kappa}_{{{\lambda}}}}$

INSPIRE   PDGID:
S126KLA
Signal strength relative to the SM prediction, $\kappa _{\lambda }$ = $\lambda _{{{\mathit H}} {{\mathit H}} {{\mathit H}}}$ $/$ $\lambda {}^{SM}_{{{\mathit H}} {{\mathit H}} {{\mathit H}}}$.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$-34.4\text{ to }33.3 $ 95 1
AAD
2023AD
ATLS 13 TeV, ${{\mathit V}}{{\mathit H}}{{\mathit H}}$, ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-0.6\text{ to }6.6 $ 95 2
AAD
2023AT
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$
$-0.4\text{ to }6.3 $ 95 3
AAD
2023AT
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$
$-3.5\text{ to }11.3 $ 95 4
AAD
2023BK
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-5.4\text{ to }14.9 $ 95 5
HAYRAPETYAN
2023
CMS 13 TeV, ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ cross sections
$-9.9\text{ to }16.9 $ 95 6
TUMASYAN
2023AE
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-1.7\text{ to }8.7 $ 95 7
TUMASYAN
2023D
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$
$-8.8\text{ to }13.4 $ 95 8
TUMASYAN
2023I
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$ ( ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$)
$-6.9\text{ to }11.1 $ 95 9
TUMASYAN
2023O
CMS 13 TeV, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$
$-1.5\text{ to }6.7 $ 95 10
AAD
2022Y
ATLS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
$-1.24\text{ to }6.49 $ 95 11
CMS
2022
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, multilepton
$-2.3\text{ to }9.4 $ 95 12
TUMASYAN
2022AN
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-3.3\text{ to }8.5 $ 95 13
SIRUNYAN
2021K
CMS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
$-5.0\text{ to }12.0 $ 95 14
AAD
2020C
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$
$-11\text{ to }17 $ 95 15
SIRUNYAN
2019
CMS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
$-11.8\text{ to }18.8 $ 95 16
SIRUNYAN
2019BE
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$
$-8.2\text{ to }13.2 $ 95 17
AABOUD
2018CW
ATLS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
18
SIRUNYAN
2018A
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$
$\text{-17 to 22.5}$ 95 19
KHACHATRYAN
2016BQ
CMS 8 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
1  AAD 2023AD search for non-resonant ${{\mathit H}}{{\mathit H}}$ production in association with a vector boson using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 139 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The vector boson decays leptonically ( ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \nu}}{{\mathit \nu}}$, ${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$). The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM value.
2  AAD 2023AT combine results from $126 - 139$ fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2023BK), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ (AAD 2023Z), and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ (AAD 2022Y). The quoted values are obtained from the profile likelihood scan as a function of $\kappa _{\lambda }$ as shown in their Fig. 5(a). All other coupling modifiers are assumed to have their SM values.
3  AAD 2023AT combine results from $126 - 139$ fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2023BK), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ (AAD 2023Z), and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ (AAD 2022Y) with single-Higgs boson analyses (${{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}$, see their Table 1). The quoted values are obtained from the profile likelihood scan as a function of $\kappa _{\lambda }$ as shown in their Fig. 5(a), assuming that all other Higgs boson couplings are at their SM values. Results with other assumptions are shown in their Table 2.
4  AAD 2023BK search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 126 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted values are obtained from the one-dimensional profile likelihood scan as a function of $\kappa _{\lambda }$. See their Fig. 12 (a). The $\mu _{ggF+VBF}$ measurement for different values of $\kappa _{\lambda }$ constrains -3.9 $<$ $\kappa _{\lambda }$ $<$ 11.1 at 95$\%$ CL as shown in their Fig. 10 (a). $\kappa _{2V}$= $\kappa _{V}$=1 is assumed in both cases.
5  HAYRAPETYAN 2023 measure the cross sections for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) using 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
6  TUMASYAN 2023AE search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, where both ${{\mathit b}}{{\overline{\mathit b}}}$ pairs are highly boosted, with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM values.
7  TUMASYAN 2023D search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted values are obtained from the upper limit on the ${{\mathit H}}{{\mathit H}}$ production cross section times the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ branching fraction for different values of $\kappa _{\lambda }$. See their Fig. 8 (left). All other coupling modifiers are assumed to be 1. In addition, two-dimensional exclusion regions as a function of the $\kappa _{\lambda }$ and $\kappa _{t}$ couplings, with $\kappa _{2V}$ = $\kappa _{V}$ = 1, are shown in their Fig. 9 (left). The one-dimensional likelihood scan as a function of $\kappa _{\lambda }$ is given in their Fig 10 (left), from which a 95$\%$ confidence interval of -1.77 $<$ $\kappa _{\lambda }$ $<$ 8.73 is extracted.
8  TUMASYAN 2023AI search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$ ( ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$, ${{\mathit \ell}}={{\mathit e}},{{\mathit \mu}}$) with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4.
9  TUMASYAN 2023O search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \tau}}{{\mathit \tau}}$, and ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$ (multilepton) with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10 for different final states and these combination. Limits are set on a variety of new-physics models using an effective field theory approach. See their Figs. 11, 12, and 13.
10  AAD 2022Y search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 139 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted ${{\mathit \kappa}_{{{\lambda}}}}$ is obtained from their Fig. 12 where the theory uncertainties are not included while a negative log-likelihood scan vs. ${{\mathit \kappa}_{{{\lambda}}}}$is shown in their Fig. 13 with the theory uncertainties, which provides ${{\mathit \kappa}_{{{\lambda}}}}$ = $2.8$ ${}^{+2.0}_{-2.2}$ for the 1$\sigma $ confidence interval.
11  CMS 2022 report combined results (see their Extended Data Table 2) using 138 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 (left).
12  TUMASYAN 2022AN search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The upper limit on the ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ production cross section at 95$\%$ CL is shown as a function of $\kappa _{\lambda }$ in their Fig. 2 (top).
13  SIRUNYAN 2021K search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 137 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
14  AAD 2020C combine results of up to 36.1 fb${}^{-1}$ data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$ (AABOUD 2018CW, AABOUD 2018CQ, AABOUD 2019A, AABOUD 2019O, AABOUD 2018BU, and AABOUD 2019T).
15  SIRUNYAN 2019 search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM value.
16  SIRUNYAN 2019BE combine results of 13 TeV 35.9 fb${}^{-1}$ data: SIRUNYAN 2019, SIRUNYAN 2018A, SIRUNYAN 2019AB, SIRUNYAN 2019H, and SIRUNYAN 2018F.
17  AABOUD 2018CW search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 36.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM value.
18  SIRUNYAN 2018A search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ with data of 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The upper limit on production cross section times branching fraction at 95$\%$ CL is shown as a function of $\kappa _{\lambda }/\kappa _{t}$ in their Fig. 6 (top) where $\kappa _{t}$ = ${{\mathit y}_{{{t}}}}$ $/$ ${{\mathit y}_{{{t}}}}{}^{SM}$ (top Yukawa coupling ${{\mathit y}_{{{t}}}}$).
19  KHACHATRYAN 2016BQ search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV.
References