CONSTRAINED FIT INFORMATION show precise values?
 
A multiparticle fit to ${{\mathit \psi}{(2S)}}$, ${{\mathit \eta}_{{{c}}}{(1S)}}$, ${{\mathit J / \psi}{(1S)}}$, ${{\mathit h}_{{{c}}}{(1P)}}$ and ${{\mathit B}^{\pm}}$ with the total width, 10 combinations of partial widths obtained from integrated cross section, and 38 branching ratios uses 113 measurements to determine 19 parameters. The overall fit has a $\chi {}^{2}$ = 184.6 for 94 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x184 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$1  100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$6   100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$9    100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$16     100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$18      100
 x${{\mathit h}_{{{c}}}{(1P)}}$30       100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$37        100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$38         100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$41          100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$45           100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$48            100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$51             100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$53              100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$54               100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$59                100
 x${{\mathit J / \psi}{(1S)}}$245                 100
 x${{\mathit B}^{\pm}}$270                  100
 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$                   100
   x184  x${{\mathit \eta}_{{{c}}}{(1S)}}$1  x${{\mathit \eta}_{{{c}}}{(1S)}}$6  x${{\mathit \eta}_{{{c}}}{(1S)}}$9  x${{\mathit \eta}_{{{c}}}{(1S)}}$16  x${{\mathit \eta}_{{{c}}}{(1S)}}$18  x${{\mathit h}_{{{c}}}{(1P)}}$30  x${{\mathit \eta}_{{{c}}}{(1S)}}$37  x${{\mathit \eta}_{{{c}}}{(1S)}}$38  x${{\mathit \eta}_{{{c}}}{(1S)}}$41  x${{\mathit \eta}_{{{c}}}{(1S)}}$45  x${{\mathit \eta}_{{{c}}}{(1S)}}$48  x${{\mathit \eta}_{{{c}}}{(1S)}}$51  x${{\mathit \eta}_{{{c}}}{(1S)}}$53  x${{\mathit \eta}_{{{c}}}{(1S)}}$54  x${{\mathit \eta}_{{{c}}}{(1S)}}$59  x${{\mathit J / \psi}{(1S)}}$245  x${{\mathit B}^{\pm}}$270 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$
 
    Mode RateScale factor

Γ184 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($3.6$ $\pm0.5$) $ \times 10^{-3}$ 1.3
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$1 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}}{{\mathit \pi}}$ ($2.0$ $\pm0.4$) $ \times 10^{-2}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$6 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}}{{\overline{\mathit K}}^{*}{(892)}}$ ($7.0$ $\pm1.2$) $ \times 10^{-3}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$9 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.8$ $\pm0.4$) $ \times 10^{-3}$ 2.3
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$16 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \omega}}$ ($2.7$ $\pm0.9$) $ \times 10^{-3}$ 2.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$18 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit f}_{{{2}}}{(1270)}}{{\mathit f}_{{{2}}}{(1270)}}$ ($1.08$ $\pm0.27$) $ \times 10^{-2}$ 
Γ${{\mathit h}_{{{c}}}{(1P)}}$30 ${{\mathit h}_{{{c}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($6.0$ $\pm0.4$) $ \times 10^{-1}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$37 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ ($7.1$ $\pm0.4$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$38 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \eta}}$ ($1.32$ $\pm0.15$) $ \times 10^{-2}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$41 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.3$ $\pm1.8$) $ \times 10^{-3}$ 1.9
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$45 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit K}^{+}}{{\mathit K}^{-}}$) ($1.4$ $\pm0.4$) $ \times 10^{-3}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$48 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($9.6$ $\pm1.5$) $ \times 10^{-3}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$51 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($1.33$ $\pm0.11$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$53 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.7$ $\pm0.5$) $ \times 10^{-3}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$54 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.10$ $\pm0.28$) $ \times 10^{-3}$ 1.5
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$59 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($1.66$ $\pm0.13$) $ \times 10^{-4}$ 1.2
Γ${{\mathit J / \psi}{(1S)}}$245 ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($1.41$ $\pm0.14$) $ \times 10^{-2}$ 1.3
Γ${{\mathit B}^{\pm}}$270 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \eta}_{{{c}}}}{{\mathit K}^{+}}$ ($1.10$ $\pm0.07$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$ ${{\mathit \eta}_{{{c}}}{(1S)}}$ WIDTH $30.5$ $\pm0.5$ (MeV) 1.2

 
A multiparticle fit to ${{\mathit \psi}{(2S)}}$, ${{\mathit \chi}_{{{c0}}}{(1P)}}$, ${{\mathit \chi}_{{{c2}}}{(1P)}}$ and ${{\mathit \chi}_{{{c1}}}{(1P)}}$ with 4 total widths, partial width, 25 combinations of partial widths obtained from integrated cross section, and 88 branching ratios uses 255 measurements and one constraint to determine 49 parameters. The overall fit has a $\chi {}^{2}$ = 393.1 for 207 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x7 100
 x8  100
 x9   100
 x12    100
 x13     100
 x14      100
 x112       100
 x181        100
 x182         100
 x183          100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$1           100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$1            100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$2             100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$8              100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$14               100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$17                100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$18                 100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$19                  100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$20                   100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$25                    100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$26                     100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$30                      100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$31                       100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$32                        100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$32                         100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$33                          100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$36                           100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$42                            100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$42                             100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$43                              100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$48                               100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$51                                100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$51                                 100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$57                                  100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$57                                   100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$59                                    100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$59                                     100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$71                                      100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$73                                       100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$73                                        100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$100                                         100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$100                                          100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$102                                           100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$104                                            100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$104                                             100
 Γ${{\mathit \psi}{(2S)}}$                                              100
 Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$                                               100
 Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$                                                100
 Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$                                                 100
   x7  x8  x9  x12  x13  x14  x112  x181  x182  x183  x${{\mathit \chi}_{{{c2}}}{(1P)}}$1  x${{\mathit \chi}_{{{c0}}}{(1P)}}$1  x${{\mathit \chi}_{{{c0}}}{(1P)}}$2  x${{\mathit \chi}_{{{c0}}}{(1P)}}$8  x${{\mathit \chi}_{{{c2}}}{(1P)}}$14  x${{\mathit \chi}_{{{c2}}}{(1P)}}$17  x${{\mathit \chi}_{{{c2}}}{(1P)}}$18  x${{\mathit \chi}_{{{c1}}}{(1P)}}$19  x${{\mathit \chi}_{{{c2}}}{(1P)}}$20  x${{\mathit \chi}_{{{c2}}}{(1P)}}$25  x${{\mathit \chi}_{{{c2}}}{(1P)}}$26  x${{\mathit \chi}_{{{c0}}}{(1P)}}$30  x${{\mathit \chi}_{{{c2}}}{(1P)}}$31  x${{\mathit \chi}_{{{c0}}}{(1P)}}$32  x${{\mathit \chi}_{{{c2}}}{(1P)}}$32  x${{\mathit \chi}_{{{c2}}}{(1P)}}$33  x${{\mathit \chi}_{{{c0}}}{(1P)}}$36  x${{\mathit \chi}_{{{c2}}}{(1P)}}$42  x${{\mathit \chi}_{{{c0}}}{(1P)}}$42  x${{\mathit \chi}_{{{c0}}}{(1P)}}$43  x${{\mathit \chi}_{{{c1}}}{(1P)}}$48  x${{\mathit \chi}_{{{c0}}}{(1P)}}$51  x${{\mathit \chi}_{{{c2}}}{(1P)}}$51  x${{\mathit \chi}_{{{c2}}}{(1P)}}$57  x${{\mathit \chi}_{{{c0}}}{(1P)}}$57  x${{\mathit \chi}_{{{c1}}}{(1P)}}$59  x${{\mathit \chi}_{{{c0}}}{(1P)}}$59  x${{\mathit \chi}_{{{c2}}}{(1P)}}$71  x${{\mathit \chi}_{{{c0}}}{(1P)}}$73  x${{\mathit \chi}_{{{c1}}}{(1P)}}$73  x${{\mathit \chi}_{{{c0}}}{(1P)}}$100  x${{\mathit \chi}_{{{c2}}}{(1P)}}$100  x${{\mathit \chi}_{{{c1}}}{(1P)}}$102  x${{\mathit \chi}_{{{c0}}}{(1P)}}$104  x${{\mathit \chi}_{{{c2}}}{(1P)}}$104 Γ${{\mathit \psi}{(2S)}}$  Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$
 
    Mode RateScale factor

Γ7 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.94$ $\pm0.22$) $ \times 10^{-3}$ 1.3
Γ8 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($8.0$ $\pm0.6$) $ \times 10^{-3}$ 
Γ9 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ($3.1$ $\pm0.4$) $ \times 10^{-3}$ 
Γ12 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($34.69$ $\pm0.34$) $ \times 10^{-2}$ 1.1
Γ13 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ ($18.2$ $\pm0.5$) $ \times 10^{-2}$ 1.6
Γ14 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$ ($3.37$ $\pm0.06$) $ \times 10^{-2}$ 1.2
Γ112 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.94$ $\pm0.09$) $ \times 10^{-4}$ 1.3
Γ181 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c0}}}{(1P)}}$ ($9.75$ $\pm0.22$) $ \times 10^{-2}$ 1.1
Γ182 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c1}}}{(1P)}}$ ($9.75$ $\pm0.27$) $ \times 10^{-2}$ 1.1
Γ183 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c2}}}{(1P)}}$ ($9.38$ $\pm0.23$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$1 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($1.12$ $\pm0.08$) $ \times 10^{-2}$ 1.5
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$1 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($2.18$ $\pm0.11$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$2 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.5$ $\pm2.7$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$8 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.81$ $\pm0.16$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$14 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.4$ $\pm1.1$) $ \times 10^{-3}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$17 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($2.1$ $\pm1.0$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$18 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($2.2$ $\pm0.9$) $ \times 10^{-3}$ 2.2
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$19 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($7.0$ $\pm0.6$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$20 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.23$ $\pm0.07$) $ \times 10^{-3}$ 1.9
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$25 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($2.26$ $\pm0.10$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$26 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.0$ $\pm1.7$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$30 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($7.4$ $\pm1.6$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$31 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($5.5$ $\pm0.4$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$32 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($8.6$ $\pm0.4$) $ \times 10^{-3}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$32 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.02$ $\pm0.15$) $ \times 10^{-3}$ 2.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$33 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($5.3$ $\pm0.4$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$36 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($3.02$ $\pm0.25$) $ \times 10^{-3}$ 1.3
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$42 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($1.30$ $\pm0.19$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$42 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($6.07$ $\pm0.33$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$43 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($3.18$ $\pm0.19$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$48 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($5.4$ $\pm1.1$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$51 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($2.8$ $\pm0.4$) $ \times 10^{-3}$ 1.5
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$51 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.67$ $\pm0.22$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$57 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.3$ $\pm0.4$) $ \times 10^{-5}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$57 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($8.48$ $\pm0.31$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$59 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.6$ $\pm0.4$) $ \times 10^{-5}$ 1.2
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$59 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.21$ $\pm0.14$) $ \times 10^{-4}$ 1.6
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$71 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.86$ $\pm0.16$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$73 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($3.61$ $\pm0.16$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$73 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.27$ $\pm0.09$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$100 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($1.41$ $\pm0.09$) $ \times 10^{-2}$ 1.7
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$100 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($19.5$ $\pm0.7$) $ \times 10^{-2}$ 1.5
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$102 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($34.3$ $\pm1.3$) $ \times 10^{-2}$ 1.3
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$104 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.06$ $\pm0.10$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$104 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.91$ $\pm0.12$) $ \times 10^{-4}$ 1.3
Γ${{\mathit \psi}{(2S)}}$ ${{\mathit \psi}{(2S)}}$ WIDTH $293$ $\pm9$ (keV) 1.2
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}$ WIDTH $0.84$ $\pm0.04$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}$ WIDTH $1.97$ $\pm0.09$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$ ${{\mathit \chi}_{{{c0}}}{(1P)}}$ WIDTH $10.9$ $\pm0.6$ (MeV) 1.1